Copied to
clipboard

?

G = C42.138D10order 320 = 26·5

138th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.138D10, C10.712+ (1+4), C4.4D47D5, (C2×Q8).82D10, D10⋊D438C2, (C2×D4).108D10, C42⋊D535C2, C22⋊C4.72D10, Dic5⋊D433C2, Dic5⋊Q821C2, Dic54D429C2, C20.23D419C2, (C2×C10).214C24, (C2×C20).630C23, (C4×C20).239C22, C2.73(D46D10), C23.36(C22×D5), Dic5.43(C4○D4), Dic5.5D438C2, (D4×C10).208C22, (C2×D20).167C22, (C22×C10).44C23, (Q8×C10).123C22, (C22×D5).94C23, C22.235(C23×D5), C23.D5.51C22, C23.11D1017C2, C54(C22.49C24), (C2×Dic5).261C23, (C4×Dic5).138C22, D10⋊C4.134C22, (C2×Dic10).181C22, C10.D4.141C22, (C22×Dic5).139C22, C2.73(D5×C4○D4), (C5×C4.4D4)⋊8C2, C10.185(C2×C4○D4), (C2×C4×D5).265C22, (C2×C4).73(C22×D5), (C2×C5⋊D4).57C22, (C5×C22⋊C4).61C22, SmallGroup(320,1342)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.138D10
C1C5C10C2×C10C2×Dic5C22×Dic5C23.11D10 — C42.138D10
C5C2×C10 — C42.138D10

Subgroups: 854 in 236 conjugacy classes, 95 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×13], C22, C22 [×12], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×14], D4 [×8], Q8 [×2], C23 [×2], C23 [×2], D5 [×2], C10, C10 [×2], C10 [×2], C42, C42 [×4], C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×6], C22×C4 [×4], C2×D4, C2×D4 [×5], C2×Q8, C2×Q8, Dic5 [×4], Dic5 [×4], C20 [×5], D10 [×6], C2×C10, C2×C10 [×6], C42⋊C2 [×4], C4×D4 [×2], C4⋊D4 [×4], C4.4D4, C4.4D4 [×3], C4⋊Q8, Dic10, C4×D5 [×4], D20, C2×Dic5 [×6], C2×Dic5 [×4], C5⋊D4 [×6], C2×C20 [×3], C2×C20 [×2], C5×D4, C5×Q8, C22×D5 [×2], C22×C10 [×2], C22.49C24, C4×Dic5 [×2], C4×Dic5 [×2], C10.D4 [×6], D10⋊C4 [×6], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C22×Dic5 [×2], C2×C5⋊D4 [×4], D4×C10, Q8×C10, C42⋊D5 [×2], C23.11D10 [×2], Dic54D4 [×2], D10⋊D4 [×2], Dic5.5D4 [×2], Dic5⋊D4 [×2], Dic5⋊Q8, C20.23D4, C5×C4.4D4, C42.138D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.49C24, C23×D5, D46D10, D5×C4○D4 [×2], C42.138D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=ab2, ad=da, cbc-1=dbd-1=a2b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 50 30 113)(2 71 21 144)(3 42 22 115)(4 73 23 146)(5 44 24 117)(6 75 25 148)(7 46 26 119)(8 77 27 150)(9 48 28 111)(10 79 29 142)(11 101 93 38)(12 132 94 69)(13 103 95 40)(14 134 96 61)(15 105 97 32)(16 136 98 63)(17 107 99 34)(18 138 100 65)(19 109 91 36)(20 140 92 67)(31 154 104 87)(33 156 106 89)(35 158 108 81)(37 160 110 83)(39 152 102 85)(41 51 114 124)(43 53 116 126)(45 55 118 128)(47 57 120 130)(49 59 112 122)(52 145 125 72)(54 147 127 74)(56 149 129 76)(58 141 121 78)(60 143 123 80)(62 155 135 88)(64 157 137 90)(66 159 139 82)(68 151 131 84)(70 153 133 86)
(1 133 123 103)(2 61 124 31)(3 135 125 105)(4 63 126 33)(5 137 127 107)(6 65 128 35)(7 139 129 109)(8 67 130 37)(9 131 121 101)(10 69 122 39)(11 111 151 141)(12 49 152 79)(13 113 153 143)(14 41 154 71)(15 115 155 145)(16 43 156 73)(17 117 157 147)(18 45 158 75)(19 119 159 149)(20 47 160 77)(21 134 51 104)(22 62 52 32)(23 136 53 106)(24 64 54 34)(25 138 55 108)(26 66 56 36)(27 140 57 110)(28 68 58 38)(29 132 59 102)(30 70 60 40)(42 88 72 97)(44 90 74 99)(46 82 76 91)(48 84 78 93)(50 86 80 95)(81 148 100 118)(83 150 92 120)(85 142 94 112)(87 144 96 114)(89 146 98 116)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 102 123 132)(2 101 124 131)(3 110 125 140)(4 109 126 139)(5 108 127 138)(6 107 128 137)(7 106 129 136)(8 105 130 135)(9 104 121 134)(10 103 122 133)(11 114 151 144)(12 113 152 143)(13 112 153 142)(14 111 154 141)(15 120 155 150)(16 119 156 149)(17 118 157 148)(18 117 158 147)(19 116 159 146)(20 115 160 145)(21 38 51 68)(22 37 52 67)(23 36 53 66)(24 35 54 65)(25 34 55 64)(26 33 56 63)(27 32 57 62)(28 31 58 61)(29 40 59 70)(30 39 60 69)(41 84 71 93)(42 83 72 92)(43 82 73 91)(44 81 74 100)(45 90 75 99)(46 89 76 98)(47 88 77 97)(48 87 78 96)(49 86 79 95)(50 85 80 94)

G:=sub<Sym(160)| (1,50,30,113)(2,71,21,144)(3,42,22,115)(4,73,23,146)(5,44,24,117)(6,75,25,148)(7,46,26,119)(8,77,27,150)(9,48,28,111)(10,79,29,142)(11,101,93,38)(12,132,94,69)(13,103,95,40)(14,134,96,61)(15,105,97,32)(16,136,98,63)(17,107,99,34)(18,138,100,65)(19,109,91,36)(20,140,92,67)(31,154,104,87)(33,156,106,89)(35,158,108,81)(37,160,110,83)(39,152,102,85)(41,51,114,124)(43,53,116,126)(45,55,118,128)(47,57,120,130)(49,59,112,122)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,103)(2,61,124,31)(3,135,125,105)(4,63,126,33)(5,137,127,107)(6,65,128,35)(7,139,129,109)(8,67,130,37)(9,131,121,101)(10,69,122,39)(11,111,151,141)(12,49,152,79)(13,113,153,143)(14,41,154,71)(15,115,155,145)(16,43,156,73)(17,117,157,147)(18,45,158,75)(19,119,159,149)(20,47,160,77)(21,134,51,104)(22,62,52,32)(23,136,53,106)(24,64,54,34)(25,138,55,108)(26,66,56,36)(27,140,57,110)(28,68,58,38)(29,132,59,102)(30,70,60,40)(42,88,72,97)(44,90,74,99)(46,82,76,91)(48,84,78,93)(50,86,80,95)(81,148,100,118)(83,150,92,120)(85,142,94,112)(87,144,96,114)(89,146,98,116), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,102,123,132)(2,101,124,131)(3,110,125,140)(4,109,126,139)(5,108,127,138)(6,107,128,137)(7,106,129,136)(8,105,130,135)(9,104,121,134)(10,103,122,133)(11,114,151,144)(12,113,152,143)(13,112,153,142)(14,111,154,141)(15,120,155,150)(16,119,156,149)(17,118,157,148)(18,117,158,147)(19,116,159,146)(20,115,160,145)(21,38,51,68)(22,37,52,67)(23,36,53,66)(24,35,54,65)(25,34,55,64)(26,33,56,63)(27,32,57,62)(28,31,58,61)(29,40,59,70)(30,39,60,69)(41,84,71,93)(42,83,72,92)(43,82,73,91)(44,81,74,100)(45,90,75,99)(46,89,76,98)(47,88,77,97)(48,87,78,96)(49,86,79,95)(50,85,80,94)>;

G:=Group( (1,50,30,113)(2,71,21,144)(3,42,22,115)(4,73,23,146)(5,44,24,117)(6,75,25,148)(7,46,26,119)(8,77,27,150)(9,48,28,111)(10,79,29,142)(11,101,93,38)(12,132,94,69)(13,103,95,40)(14,134,96,61)(15,105,97,32)(16,136,98,63)(17,107,99,34)(18,138,100,65)(19,109,91,36)(20,140,92,67)(31,154,104,87)(33,156,106,89)(35,158,108,81)(37,160,110,83)(39,152,102,85)(41,51,114,124)(43,53,116,126)(45,55,118,128)(47,57,120,130)(49,59,112,122)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,103)(2,61,124,31)(3,135,125,105)(4,63,126,33)(5,137,127,107)(6,65,128,35)(7,139,129,109)(8,67,130,37)(9,131,121,101)(10,69,122,39)(11,111,151,141)(12,49,152,79)(13,113,153,143)(14,41,154,71)(15,115,155,145)(16,43,156,73)(17,117,157,147)(18,45,158,75)(19,119,159,149)(20,47,160,77)(21,134,51,104)(22,62,52,32)(23,136,53,106)(24,64,54,34)(25,138,55,108)(26,66,56,36)(27,140,57,110)(28,68,58,38)(29,132,59,102)(30,70,60,40)(42,88,72,97)(44,90,74,99)(46,82,76,91)(48,84,78,93)(50,86,80,95)(81,148,100,118)(83,150,92,120)(85,142,94,112)(87,144,96,114)(89,146,98,116), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,102,123,132)(2,101,124,131)(3,110,125,140)(4,109,126,139)(5,108,127,138)(6,107,128,137)(7,106,129,136)(8,105,130,135)(9,104,121,134)(10,103,122,133)(11,114,151,144)(12,113,152,143)(13,112,153,142)(14,111,154,141)(15,120,155,150)(16,119,156,149)(17,118,157,148)(18,117,158,147)(19,116,159,146)(20,115,160,145)(21,38,51,68)(22,37,52,67)(23,36,53,66)(24,35,54,65)(25,34,55,64)(26,33,56,63)(27,32,57,62)(28,31,58,61)(29,40,59,70)(30,39,60,69)(41,84,71,93)(42,83,72,92)(43,82,73,91)(44,81,74,100)(45,90,75,99)(46,89,76,98)(47,88,77,97)(48,87,78,96)(49,86,79,95)(50,85,80,94) );

G=PermutationGroup([(1,50,30,113),(2,71,21,144),(3,42,22,115),(4,73,23,146),(5,44,24,117),(6,75,25,148),(7,46,26,119),(8,77,27,150),(9,48,28,111),(10,79,29,142),(11,101,93,38),(12,132,94,69),(13,103,95,40),(14,134,96,61),(15,105,97,32),(16,136,98,63),(17,107,99,34),(18,138,100,65),(19,109,91,36),(20,140,92,67),(31,154,104,87),(33,156,106,89),(35,158,108,81),(37,160,110,83),(39,152,102,85),(41,51,114,124),(43,53,116,126),(45,55,118,128),(47,57,120,130),(49,59,112,122),(52,145,125,72),(54,147,127,74),(56,149,129,76),(58,141,121,78),(60,143,123,80),(62,155,135,88),(64,157,137,90),(66,159,139,82),(68,151,131,84),(70,153,133,86)], [(1,133,123,103),(2,61,124,31),(3,135,125,105),(4,63,126,33),(5,137,127,107),(6,65,128,35),(7,139,129,109),(8,67,130,37),(9,131,121,101),(10,69,122,39),(11,111,151,141),(12,49,152,79),(13,113,153,143),(14,41,154,71),(15,115,155,145),(16,43,156,73),(17,117,157,147),(18,45,158,75),(19,119,159,149),(20,47,160,77),(21,134,51,104),(22,62,52,32),(23,136,53,106),(24,64,54,34),(25,138,55,108),(26,66,56,36),(27,140,57,110),(28,68,58,38),(29,132,59,102),(30,70,60,40),(42,88,72,97),(44,90,74,99),(46,82,76,91),(48,84,78,93),(50,86,80,95),(81,148,100,118),(83,150,92,120),(85,142,94,112),(87,144,96,114),(89,146,98,116)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,102,123,132),(2,101,124,131),(3,110,125,140),(4,109,126,139),(5,108,127,138),(6,107,128,137),(7,106,129,136),(8,105,130,135),(9,104,121,134),(10,103,122,133),(11,114,151,144),(12,113,152,143),(13,112,153,142),(14,111,154,141),(15,120,155,150),(16,119,156,149),(17,118,157,148),(18,117,158,147),(19,116,159,146),(20,115,160,145),(21,38,51,68),(22,37,52,67),(23,36,53,66),(24,35,54,65),(25,34,55,64),(26,33,56,63),(27,32,57,62),(28,31,58,61),(29,40,59,70),(30,39,60,69),(41,84,71,93),(42,83,72,92),(43,82,73,91),(44,81,74,100),(45,90,75,99),(46,89,76,98),(47,88,77,97),(48,87,78,96),(49,86,79,95),(50,85,80,94)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
001000
000100
0000158
00001326
,
100000
21400000
0040000
0004000
000090
000009
,
950000
25320000
00353500
0064000
000010
00002740
,
950000
25320000
006600
0013500
0000320
0000032

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,13,0,0,0,0,8,26],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[9,25,0,0,0,0,5,32,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,1,27,0,0,0,0,0,40],[9,25,0,0,0,0,5,32,0,0,0,0,0,0,6,1,0,0,0,0,6,35,0,0,0,0,0,0,32,0,0,0,0,0,0,32] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H···4O4P4Q5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order1222222244444444···4445510···101010101020···2020202020
size1111442020222244410···102020222···288884···48888

53 irreducible representations

dim1111111111222222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D102+ (1+4)D46D10D5×C4○D4
kernelC42.138D10C42⋊D5C23.11D10Dic54D4D10⋊D4Dic5.5D4Dic5⋊D4Dic5⋊Q8C20.23D4C5×C4.4D4C4.4D4Dic5C42C22⋊C4C2×D4C2×Q8C10C2C2
# reps1222222111282822148

In GAP, Magma, Sage, TeX

C_4^2._{138}D_{10}
% in TeX

G:=Group("C4^2.138D10");
// GroupNames label

G:=SmallGroup(320,1342);
// by ID

G=gap.SmallGroup(320,1342);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,387,100,346,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽